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Plan

* Monadic semantics of GDE based on monad of sequences

— instan ion with list monad = “intuiti semantics

= iation with i monad = semantics
(reconstruction of a published continuation semantics)

— conceptual and formal links between semantics

o Semantics-directed compilation of GDE
~ semantics define interpreter — compilation by partial evaluation
— analysis of shape of residual code — templates for compilation
~ resulting code comparable to that of a published optimizing compiler

[p——

A bind Operator

Monads often used for structuring functional programs; bind operators used
to combine results. Consider

bind2y = (@ — B — yM) = aM — FM — 4 M
bind2yy f as s = joiny, (mapy (Ajoiny (mapy (S o) us)) &)
Binder bind2y, in terms of lists:
bind2| (Axy.(z,3)) [4] [5,6,7] = [(4,5),(4,6),(4,7)]
Compare with

4to (5to 7) — 4,5,4,5,6,4,56,6,7

[T

Goal-directed Evaluation

« Goaldirected programs combine expressions that can yield multiple
results through backtracking
~ an expression e either succeeds or fails
— if expression fails, control passed to a previous expression e’
— if ¢/ generates another result, then e is retried

* Examples
7T — 7

5t07 — 56,7
4to{5to7) — 4,54,56,4,5,6,7

» Goal-directed elements can be found, e g, in Icon, Snobol and Prolog

e [T

Maonads

o A monad M is described by a unary type constructor M and three
operations.
unity a—aM
mapy (o 8) > aM - FM
joiny © (aM)M —aM

® The so-called monadic laws have to hold, e g,

(mapy, F) o unity = unity o |

[Rp—

The Sequence Monad

« Functionality of monad is defined through additional monadic operations
« For GDE, we are interested into representing sequences
 We add two monadic operations

empty  aM
appendyy oM —aM—aM

[ep—

2205 3500

Several Aspects of Goal-Directed Evaluation (GDE)

Intuition: an intuitive description of GDE can be given in terms of list
manipulations

Semantics: there is a formal description of GDE (given as a continuation
semantics, Gudeman 1992)

Code Generation: a compiler of GDE into a flow-chart language has been
based on the four-port model (Proebsting 1997)

Using monads and partial evaluation, we unify intuition, semantics and code
generation

Example: Monad of lists

wnit x - [

mapy [ || =

mapy £ (x:ws) = (f @) (map, f zs)
joiny [ =

join, (In1s) = 1@ (join, Is)

Example: Monad of lists (revisited)

fry{mapg )

emply,

append, 75 4

[
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Producing Sequences of Results

* Based on sequence monad, we can give a specification of i to j

towij = ifi>j then empty,
else append,, (unity i) (toy {i+1) j)

o Similarily, a specification of i <= j

leqy i j=if i < j then unity: j else empiyy

 We can nest generators to and <= by combining results with bind21

The Centinuation Monad

unitc = Xkkzr

mape fas = Meas(Azk(f2))
joing Is = M (A k)
emptyc = AL

appendc x5 ys = Ak.(zsk)o (ysk)

Beand Gt

A correspondence proof

 Monads can be related using monad morphisms

o Lemma: Let M and N be monads of sequences. If & is a monad
morphism from M to N, then (% [%]w) = [E]n for every Icon expression
B

o Theorem: Let show : a.C — oL be defined as
show f = F (Av.Azs.append, (unit, z) ws) empty,

Then (show [E]c) = [E]L for all lcon expressions

[ER—

Compilation by Partial Evaluation: Example

Specializing a continuation-based interpreter with respect to the Icon term
10 + (4 to 7) yields

fnk => fn f =
fix (fn loop0 =>
Q0 =>
cond (leq (i0, gint 7),
fn () => k (add (qint 10, i0))
(fn ) => loop0 (add (i0,

qint 1))),

O =10)N
(qint 4)

Template-based Code Generation (I1)

|5l
succ: printf(*4d ., value);
[tn k= fn £ => Sh = goto resune;
fail: printf("\n");
exit(0);
value = |E|z;
e £ (n O = 9 goto succ;
resune: |Sls
[ O {goto fail;

Beand Gt
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A Monadic Semantics of a Subset of lcon

‘We consider the following subset of lcon

QB+ B | By to By | By <= B

A monadic semantics

[l : Beo—imM

[l = wnityi
[Erto Byl = bind2y (Aay.toy @ 4) [Bxm [Eolw
[ + Bl bind2y (Axyunity {2+ 1)) [Ba]u [E2ly
[Br<=Eslu = bind2y (ray.leqy = 9) [Bx]m [Bolm

Instantiation of monadic semantics with monad of lists yields list-based
semantics

A Continuation Semantics

We instantiate the monadic semantics with the continuation semantics.

He : Bop— (it N

fle = ki
[B:toBsle = A [B]c (M. [Ezlc (M.toc £ § k)
B + Esfc Ak [Brflc (M| Ez]c (MR (24 5)))
[B: <=E]c AR[E: i)

where
Akif i < § then (k §) else (AL
Akif i > § then {AL1)

else (k i) s (toc (i +1) 5 k)

[Em—

Plan

instavtiation with cont

» Semantics-directed compilation of GDE

— semantics define interpreter — compilation by partial evaluation
— analysis of shape of resicual code —> templates for compilation
~ resulting code comparable to that of a published optimizing compiler

Analysis of Residual Code

« Type of residual program is (int — (1~ a) —~a) — (1 ~a) ~a

 Residual program is in long beta-cta normalform (property of TDPE)
— Residual program I always of form I k=>fnt=>§

« Further analysis yields a grammar of the residual code:

§ u= kK E (fn O = 8)
| £0
| cond (B, fn 0 = 8, tn O = §)
| fix (fn loop, => fn i, =>» §) E
| loop, E
E = qint n|i.|add (E, B) |leq (E, E)

Beand Gt

Template-based Code Generation: Example
The term 10 + {4 to 7) is translated into the following C program:

loop0: if (10 <= 7) goto LO;

goto fail;

0415
goto 1ocp0;

PrintICua v, value);
goto resume;

fall:  printf(™w";
exit(0);

Beand Gt

From Lists to Continuations

« Hughes's higher-order representation of lists

ail
cons

Aws.us
Aps.xps

 Church-encoding: abstract over selector function
mil = As.Apsys
consz = As.Aps.sczus
 Resulting representation of lists can be typed as

@58 8-8

« Corresponds to continuation monad o C = (& — R) — R with answer
type R=753—3

Explicit Success and Failure Continuations

« Similar development leads to continuation semantics with explicit success
and failure continuations

« Meaning of expression has type
(int (1 »a)—a)»(1—a)—a

— first argument is success continuation
— second argument is failure continuation

[E—

Compilation by Partial Evaluation

o Denotational semantics defines an intepreter; straightforward
implementation, e.g., in ML

o First Futamura Projection

PE(interpreter, source) = target

o We use type-directed partial evaiuation = target code in ML

Beand Gt

Template-based Code Generation (1)

« Simple structure of residual code = flow-chart language sufficient

o Eg. translate residual programs into C

~ replace function calls with jumps to labels
(function name uniquely determines label)
~ replace parameters by variable assignments

o Bxample rule:
i, = |E|
goto loop,;

Loop,, Els= {

[Em—

Conclusion

« We unify intuition, semantics and code generation for GDE, using
theoretical and practical tools

 We give a monadic semantics of GDE based on a sequence monad

— instantiation with list monad yields intuitive semantics
with monad

continuation semantics (TOPLAS'92)

Gudeman's

« We generate code comparable to that of Procbsting’s compiler (PLDI'07)
using partial evaluation and template-based code generation

[p—
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