

MRS 7P

HIADE 7P

MRS 7P

HIADE 7P

to Goal-Directed Evaluation

Olivier Danvy, Bernd Grobauer, and Morten Rhiger
BRICS
University of Aarhus, Denmark

September 6th, 2001

Plan

* Monadic semantics of GDE based on monad of sequences

— instan ion with list monad = “intuiti semantics

= iation with i monad = semantics
(reconstruction of a published continuation semantics)

— conceptual and formal links between semantics

o Semantics-directed compilation of GDE
~ semantics define interpreter — compilation by partial evaluation
— analysis of shape of residual code — templates for compilation
~ resulting code comparable to that of a published optimizing compiler

[p——

A bind Operator

Monads often used for structuring functional programs; bind operators used
to combine results. Consider

bind2y = (@ — B — yM) = aM — FM — 4 M
bind2yy f as s = joiny, (mapy (Ajoiny (mapy (S o) us)) &)
Binder bind2y, in terms of lists:
bind2| (Axy.(z,3)) [4] [5,6,7] = [(4,5),(4,6),(4,7)]
Compare with

4to (5to 7) — 4,5,4,5,6,4,56,6,7

[T

Goal-directed Evaluation

« Goaldirected programs combine expressions that can yield multiple
results through backtracking
~ an expression e either succeeds or fails
— if expression fails, control passed to a previous expression e’
— if ¢/ generates another result, then e is retried

* Examples
7T — 7

5t07 — 56,7
4to{5to7) — 4,54,56,4,5,6,7

» Goal-directed elements can be found, e g, in Icon, Snobol and Prolog

e [T

Maonads

o A monad M is described by a unary type constructor M and three
operations.
unity a—aM
mapy (o 8) > aM - FM
joiny © (aM)M —aM

® The so-called monadic laws have to hold, e g,

(mapy, F) o unity = unity o |

[Rp—

The Sequence Monad

« Functionality of monad is defined through additional monadic operations
« For GDE, we are interested into representing sequences
 We add two monadic operations

empty aM
appendyy oM —aM—aM

[ep—

2205 3500

Several Aspects of Goal-Directed Evaluation (GDE)

Intuition: an intuitive description of GDE can be given in terms of list
manipulations

Semantics: there is a formal description of GDE (given as a continuation
semantics, Gudeman 1992)

Code Generation: a compiler of GDE into a flow-chart language has been
based on the four-port model (Proebsting 1997)

Using monads and partial evaluation, we unify intuition, semantics and code
generation

Example: Monad of lists

wnit x - [

mapy [|| =

mapy £ (x:ws) = (f @) (map, f zs)
joiny [=

join, (In1s) = 1@ (join, Is)

Example: Monad of lists (revisited)

fry{mapg)

emply,

append, 75 4

[

MRS 7P

Producing Sequences of Results

* Based on sequence monad, we can give a specification of i to j

towij = ifi>j then empty,
else append,, (unity i) (toy {i+1) j)

o Similarily, a specification of i <= j

leqy i j=if i < j then unity: j else empiyy

 We can nest generators to and <= by combining results with bind21

The Centinuation Monad

unitc = Xkkzr

mape fas = Meas(Azk(f2))
joing Is = M (A k)
emptyc = AL

appendc x5 ys = Ak.(zsk)o (ysk)

Beand Gt

A correspondence proof

 Monads can be related using monad morphisms

o Lemma: Let M and N be monads of sequences. If & is a monad
morphism from M to N, then (% [%]w) = [E]n for every Icon expression
B

o Theorem: Let show : a.C — oL be defined as
show f = F (Av.Azs.append, (unit, z) ws) empty,

Then (show [E]c) = [E]L for all lcon expressions

[ER—

Compilation by Partial Evaluation: Example

Specializing a continuation-based interpreter with respect to the Icon term
10 + (4 to 7) yields

fnk => fn f =
fix (fn loop0 =>
Q0 =>
cond (leq (i0, gint 7),
fn () => k (add (qint 10, i0))
(fn) => loop0 (add (i0,

qint 1))),

O =10)N
(qint 4)

Template-based Code Generation (I1)

|5l
succ: printf(*4d ., value);
[tn k= fn £ => Sh = goto resune;
fail: printf("\n");
exit(0);
value = |E|z;
e £ (n O = 9 goto succ;
resune: |Sls
[O {goto fail;

Beand Gt

HIADE 7P

A Monadic Semantics of a Subset of lcon

‘We consider the following subset of lcon

QB+ B | By to By | By <= B

A monadic semantics

[l : Beo—imM

[l = wnityi
[Erto Byl = bind2y (Aay.toy @ 4) [Bxm [Eolw
[+ Bl bind2y (Axyunity {2+ 1)) [Ba]u [E2ly
[Br<=Eslu = bind2y (ray.leqy = 9) [Bx]m [Bolm

Instantiation of monadic semantics with monad of lists yields list-based
semantics

A Continuation Semantics

We instantiate the monadic semantics with the continuation semantics.

He : Bop— (it N

fle = ki
[B:toBsle = A [B]c (M. [Ezlc (M.toc £ § k)
B + Esfc Ak [Brflc (M| Ez]c (MR (24 5)))
[B: <=E]c AR[E: i)

where
Akif i < § then (k §) else (AL
Akif i > § then {AL1)

else (k i) s (toc (i +1) 5 k)

[Em—

Plan

instavtiation with cont

» Semantics-directed compilation of GDE

— semantics define interpreter — compilation by partial evaluation
— analysis of shape of resicual code —> templates for compilation
~ resulting code comparable to that of a published optimizing compiler

Analysis of Residual Code

« Type of residual program is (int — (1~ a) —~a) — (1 ~a) ~a

 Residual program is in long beta-cta normalform (property of TDPE)
— Residual program I always of form I k=>fnt=>§

« Further analysis yields a grammar of the residual code:

§ u= kK E (fn O = 8)
| £0
| cond (B, fn 0 = 8, tn O = §)
| fix (fn loop, => fn i, =>» §) E
| loop, E
E = qint n|i.|add (E, B) |leq (E, E)

Beand Gt

Template-based Code Generation: Example
The term 10 + {4 to 7) is translated into the following C program:

loop0: if (10 <= 7) goto LO;

goto fail;

0415
goto 1ocp0;

PrintICua v, value);
goto resume;

fall: printf(™w";
exit(0);

Beand Gt

From Lists to Continuations

« Hughes's higher-order representation of lists

ail
cons

Aws.us
Aps.xps

 Church-encoding: abstract over selector function
mil = As.Apsys
consz = As.Aps.sczus
 Resulting representation of lists can be typed as

@58 8-8

« Corresponds to continuation monad o C = (& — R) — R with answer
type R=753—3

Explicit Success and Failure Continuations

« Similar development leads to continuation semantics with explicit success
and failure continuations

« Meaning of expression has type
(int (1 »a)—a)»(1—a)—a

— first argument is success continuation
— second argument is failure continuation

[E—

Compilation by Partial Evaluation

o Denotational semantics defines an intepreter; straightforward
implementation, e.g., in ML

o First Futamura Projection

PE(interpreter, source) = target

o We use type-directed partial evaiuation = target code in ML

Beand Gt

Template-based Code Generation (1)

« Simple structure of residual code = flow-chart language sufficient

o Eg. translate residual programs into C

~ replace function calls with jumps to labels
(function name uniquely determines label)
~ replace parameters by variable assignments

o Bxample rule:
i, = |E|
goto loop,;

Loop,, Els= {

[Em—

Conclusion

« We unify intuition, semantics and code generation for GDE, using
theoretical and practical tools

 We give a monadic semantics of GDE based on a sequence monad

— instantiation with list monad yields intuitive semantics
with monad

continuation semantics (TOPLAS'92)

Gudeman's

« We generate code comparable to that of Procbsting’s compiler (PLDI'07)
using partial evaluation and template-based code generation

[p—

MRS 7P

HIADE 7P

MRS TP

HIADE 7P

MADE TP

MADS TP

MRS TP

HIADE 7P

MRS TP

HIADE 7P

MRS TP

HIADE 7P

MRS TP

HIADE 7P

MRS TP

HIADE 7P

MRS TP

HIADE 7P

MRS TP

HIADE 7P

MRS TP

HIADE 7P

MRS TP

HIADE 7P

MRS TP

HIADE 7P

o

MRS TP

HIADE 7P

MRS TP

MRS 7P

